GenJet™ In Vitro DNA Transfection Reagent for C2C12 Cells (Ver. II)

---- A Protocol for Transfecting C2C12 Cells

tion	SignaGen [®] Laboratories
11)	Laboratories

10075 Tyler Place, Suite 19 Ijamsville, MD 21754 FAX. 301-560-4919

Toll Free. 1-(866)-918-6812 Email: <u>info@signagen.com</u> Web: <u>www.signagen.com</u>

TEL. 301-330-5966

100 μl
500 μl
1000 μl

This product is for laboratory research ONLY and not for diagnostic use

Introduction:

GenJet™ In Vitro DNA Tranfection Reagent (Ver. II) is upgraded version of GenJet™ In Vitro DNA Tranfection Reagent. With a new chemistry, more DNA condensing groups were released in the new version compared with old version GenJet™, leading to 3~20 times more efficient in DNA delivery. GenJet™ (Ver. II) for C2C12 cells was pre-optimized and conditioned for transfecting C2C12 cells.

Procedures for Transfecting C2C12 Cells: Step I. Culturing of Cells Before Transfection

Cells should be plated at least 24 hours prior to transfection so that the monolayer cell density reaches to the optimal $95\sim100\%$ confluency at the day of transfection.

Table 1. A Guideline for Optimal Cell Number Per Well in Different Culture Formats

Culture Dishes	Surface Area (cm²)	Optimal Cell Number	
T75 Flask	75	9.6 x 10 ⁶	
100 mm Dish	58	7.3 x 10 ⁶	
60 mm Dish	21	2.7 x 10 ⁶	
35 mm Dish	9.6	1.2 x 10 ⁶	
6-well Plate	9.6	1.2 x 10 ⁶	
12-well Plate	3.5	0.44 x 10 ⁶	
24-well Plate	1.9	0.24 x 10 ⁶	
48-well Plate	1.0	0.11 x 10 ⁶	
96-well Plate	0.3	0.31 x 10 ⁵	

Table 2. Recommended Amounts for Different Culture Vessel Formats

Culture Dish	Transfection Complex Volume (ml)	Plasmid DNA (µg)	GenJet™ Reagent (μL)
96-well	0.02	0.2	0.8
48-well	0.04	0.5	2
24-well	0.1	1.0	4
6-well	0.2	2	8
35 mm dish	0.2	2	8
60 mm dish	0.5	5	20
10 cm dish	1.0	8	32
T75 flask	1.5	36	144
250 ml flask	2.5	100	400

Step II. Preparation of Cells in Suspension

The following protocol is given for transfecting C2C12 in 6-well plates, refer to <u>Table 1</u> for optimal cell number per well per culture vessels' surface area. The optimal transfection conditions for C2C12 cells are given in the standard protocol described below.

- Detach the C2C12 cells with trypsin/EDTA and stop the trypsinization with complete culture medium.

Note: Cells that are difficult to detach may be placed at 37 °C for 5-15 min to facilitate detachment

- Take an aliquot of trypsinized cell suspension and count the cells to determine the cell density.
- Centrifuge the required 1.2x10⁶ cells per well for 6-well plate at 160xg at room temperature for 10 min.
- Use fine tip pipette to remove supernatant **completely** so that no residual medium covers the cell pellet.

Step III. Preparation and application of Transfection Complex

For C2C12 cells, the optimal ratio of GenJet™ (µL):DNA (µg) is 4:1. To ensure the optimal size of complex particles, we recommend using serum-free DMEM with High Glucose to dilute DNA and GenJet™ Reagent.

The following protocol is given for transfection in 6-well plates, refer to <u>Table 2</u> for transfection in other culture formats.

- For each well of 6-well plate, dilute 2 μg of DNA into 100 μl of serum-free DMEM with High Glucose. Vortex gently and spin down briefly to bring drops to bottom of the tube.
- For each well of 6-well plate, dilute 8 µl of GenJet™ reagent (Ver. II) into 100 µl of serum-free DMEM with High Glucose. Vortex gently and spin down briefly.
- Add the diluted GenJet™ Reagent immediately to the diluted DNA solution all at once. (Important: do not mix the solutions in the reverse order!)
- Immediately pipette up and down 3~4 times or vortex briefly to mix followed by incubation for ~15 minutes at room temperature to allow GenJet™-DNA transfection complexes to form.

Note: Never keep the transfection complexes longer than 20 minutes

- Resuspend the cell pellet prepared from <u>Step II</u> immediately in the 200 μl transfection complex and incubate at 37 °C for 20 minutes.
- At the end of incubation, add 2.0 ml of pre-warmed fresh complete cell growth medium to cells and plate onto one well of a 6-well plate.
- Check transfection efficiency 24 to 48 hours post transfection.

Storage: GenJet[™] DNA In Vitro Transfection Reagent is stable for up to 12 months at +4 °C. This item shipped at RT